1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
| import argparse import math import os import pickle import random import signal import warnings
from collections import defaultdict from random import shuffle
import multitasking import numpy as np import pandas as pd from annoy import AnnoyIndex from gensim.models import Word2Vec from tqdm import tqdm
from utils import Logger, evaluate
warnings.filterwarnings('ignore')
max_threads = multitasking.config['CPU_CORES'] multitasking.set_max_threads(max_threads) multitasking.set_engine('process')
signal.signal(signal.SIGINT, multitasking.killall)
seed = 2020 random.seed(seed)
parser = argparse.ArgumentParser(description='w2v 召回') parser.add_argument('--mode', default='valid', help="运行模式: 'valid'(离线验证)或 'online'(线上推理)") parser.add_argument('--logfile', default='test.log', help="日志文件名")
args = parser.parse_args() mode = args.mode logfile = args.logfile
os.makedirs('../user_data/log', exist_ok=True) log = Logger(f'../user_data/log/{logfile}').logger log.info(f'w2v 召回,mode: {mode}')
def word2vec(df_, f1, f2, model_path): """ 基于用户-物品交互序列训练 Word2Vec 模型,返回物品向量映射。 参数: df_: DataFrame,包含用户和物品交互记录 f1: 用户列名(如 'user_id') f2: 物品列名(如 'click_article_id') model_path: 模型保存路径 返回: article_vec_map: dict,{article_id: embedding_vector} """ df = df_.copy() tmp = df.groupby(f1, as_index=False)[f2].agg({f'{f1}_{f2}_list': list}) sentences = tmp[f'{f1}_{f2}_list'].values.tolist() del tmp[f'{f1}_{f2}_list']
words = [] for i in range(len(sentences)): x = [str(x) for x in sentences[i]] sentences[i] = x words += x
if os.path.exists(f'{model_path}/w2v.m'): model = Word2Vec.load(f'{model_path}/w2v.m') else: model = Word2Vec( sentences=sentences, size=256, window=3, min_count=1, sg=1, hs=0, seed=seed, negative=5, workers=10, iter=1 ) model.save(f'{model_path}/w2v.m')
article_vec_map = {} for word in set(words): if word in model.wv: article_vec_map[int(word)] = model.wv[word] return article_vec_map
@multitasking.task def recall(df_query, article_vec_map, article_index, user_item_dict, worker_id): """ 对一批用户进行召回,结果保存为临时 pkl 文件。 参数: df_query: DataFrame,包含 ['user_id', 'click_article_id'],-1 表示无标签 article_vec_map: 物品向量映射 article_index: Annoy 索引 user_item_dict: 用户历史点击字典 {user_id: [item1, item2, ...]} worker_id: 任务 ID,用于命名临时文件 """ data_list = []
for user_id, item_id in tqdm(df_query.values, desc=f'Worker {worker_id}'): rank = defaultdict(int)
interacted_items = user_item_dict[user_id][-1:]
for item in interacted_items: article_vec = article_vec_map[item] item_ids, distances = article_index.get_nns_by_vector( article_vec, 100, include_distances=True ) sim_scores = [2 - distance for distance in distances]
for relate_item, wij in zip(item_ids, sim_scores): if relate_item not in interacted_items: rank[relate_item] += wij
sim_items = sorted(rank.items(), key=lambda d: d[1], reverse=True)[:50] item_ids = [item[0] for item in sim_items] item_sim_scores = [item[1] for item in sim_items]
df_temp = pd.DataFrame({ 'article_id': item_ids, 'sim_score': item_sim_scores, 'user_id': user_id })
if item_id == -1: df_temp['label'] = np.nan else: df_temp['label'] = 0 df_temp.loc[df_temp['article_id'] == item_id, 'label'] = 1
df_temp = df_temp[['user_id', 'article_id', 'sim_score', 'label']] df_temp['user_id'] = df_temp['user_id'].astype('int') df_temp['article_id'] = df_temp['article_id'].astype('int')
data_list.append(df_temp)
df_data = pd.concat(data_list, sort=False)
os.makedirs('../user_data/tmp/w2v', exist_ok=True) df_data.to_pickle(f'../user_data/tmp/w2v/{worker_id}.pkl')
if __name__ == '__main__': if mode == 'valid': df_click = pd.read_pickle('../user_data/data/offline/click.pkl') df_query = pd.read_pickle('../user_data/data/offline/query.pkl') os.makedirs('../user_data/data/offline', exist_ok=True) os.makedirs('../user_data/model/offline', exist_ok=True) w2v_file = '../user_data/data/offline/article_w2v.pkl' model_path = '../user_data/model/offline' else: df_click = pd.read_pickle('../user_data/data/online/click.pkl') df_query = pd.read_pickle('../user_data/data/online/query.pkl') os.makedirs('../user_data/data/online', exist_ok=True) os.makedirs('../user_data/model/online', exist_ok=True) w2v_file = '../user_data/data/online/article_w2v.pkl' model_path = '../user_data/model/online'
log.debug(f'df_click shape: {df_click.shape}') log.debug(f'{df_click.head()}')
article_vec_map = word2vec(df_click, 'user_id', 'click_article_id', model_path) with open(w2v_file, 'wb') as f: pickle.dump(article_vec_map, f)
article_index = AnnoyIndex(256, 'angular') article_index.set_seed(2020)
for article_id, emb in tqdm(article_vec_map.items(), desc='Building Annoy Index'): article_index.add_item(article_id, emb) article_index.build(100)
user_item_ = df_click.groupby('user_id')['click_article_id'].agg(list).reset_index() user_item_dict = dict(zip(user_item_['user_id'], user_item_['click_article_id']))
n_split = max_threads all_users = df_query['user_id'].unique() shuffle(all_users) total = len(all_users) n_len = total // n_split
tmp_dir = '../user_data/tmp/w2v' if os.path.exists(tmp_dir): for file_name in os.listdir(tmp_dir): os.remove(os.path.join(tmp_dir, file_name))
for i in range(0, total, n_len): part_users = all_users[i:i + n_len] df_temp = df_query[df_query['user_id'].isin(part_users)] recall(df_temp, article_vec_map, article_index, user_item_dict, i)
multitasking.wait_for_tasks() log.info('合并任务')
df_data = pd.DataFrame() for file_name in os.listdir(tmp_dir): df_temp = pd.read_pickle(os.path.join(tmp_dir, file_name)) df_data = pd.concat([df_data, df_temp], ignore_index=True)
df_data = df_data.sort_values(['user_id', 'sim_score'], ascending=[True, False]).reset_index(drop=True) log.debug(f'df_data.head: {df_data.head()}')
if mode == 'valid': log.info('计算召回指标') total_users = df_query[df_query['click_article_id'] != -1].user_id.nunique() metrics = evaluate(df_data[df_data['label'].notnull()], total_users) hitrate_5, mrr_5, hitrate_10, mrr_10, hitrate_20, mrr_20, hitrate_40, mrr_40, hitrate_50, mrr_50 = metrics log.debug(f'w2v: HR@5={hitrate_5:.4f}, MRR@5={mrr_5:.4f}, HR@10={hitrate_10:.4f}, MRR@10={mrr_10:.4f}, ...')
output_path = '../user_data/data/offline/recall_w2v.pkl' if mode == 'valid' else '../user_data/data/online/recall_w2v.pkl' df_data.to_pickle(output_path) log.info(f'召回结果已保存至: {output_path}')
|